A3N: An artificial neural network n-gram-based method to approximate 3-D polypeptides structure prediction
نویسندگان
چکیده
A long standing problem in computational molecular biology is to determine the three-dimensional (3-D) structure of a protein when only a sequence of amino acids residues is given. Some protein structure prediction methods utilize structural information from protein templates in order to build the structure of unknown proteins. Examining structural protein motifs in detail is highly difficult since the task of mapping from a local sequence of amino acid residues to a local 3-D protein structure is very complex. This study presents a new statistical fragment-based method to acquire structural information from small protein template samples (A3N – Artificial Neural Network n-gram-based). Structural data obtained from protein templates were used in order to train an artificial neural network. Afterwards, approximative 3-D polypeptides structures are built through the use of a sequence-to-structure mapping function. The efficiency of the developed method is demonstrated in four case studies of polypeptides whose sizes vary from 19 to 34 amino acids residues. As indicated by the RMSD values and Ramachandran Plot values, the results show that the predicted structures adopt a fold similar to the experimental structures. Thus, they can be used as input structures in refinement methods based on molecular mechanics (MM), e.g. molecular dynamics (MD) simulations. The search space is expected to be greatly reduced and the ab initio methods can demand a much reduced computational time to achieve a more accurate polypeptide structure. We also discuss the results, future works and limitations of the proposed method. 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Prediction of the Liquid Vapor Pressure Using the Artificial Neural Network-Group Contribution Method
In this paper, vapor pressure for pure compounds is estimated using the Artificial Neural Networks and a simple Group Contribution Method (ANN–GCM). For model comprehensiveness, materials were chosen from various families. Most of materials are from 12 families. Vapor pressure data of 100 compounds is used to train, validate and test the ANN-GCM model. Va...
متن کاملPredictions of Tool Wear in Hard Turning of AISI4140 Steel through Artificial Neural Network, Fuzzy Logic and Regression Models
The tool wear is an unavoidable phenomenon when using coated carbide tools during hard turning of hardened steels. This work focuses on the prediction of tool wear using regression analysis and artificial neural network (ANN).The work piece taken into consideration is AISI4140 steel hardened to 47 HRC. The models are developed from the results of experiments, which are carried out based on De...
متن کاملArtificial Neural Network Based Prediction Hardness of Al2024-Multiwall Carbon Nanotube Composite Prepared by Mechanical Alloying
In this study, artificial neural network was used to predict the microhardness of Al2024-multiwall carbon nanotube(MWCNT) composite prepared by mechanical alloying. Accordingly, the operational condition, i.e., the amount of reinforcement, ball to powder weight ratio, compaction pressure, milling time, time and temperature of sintering as well as vial speed were selected as independent input an...
متن کاملOnline Composition Prediction of a Debutanizer Column Using Artificial Neural Network
The current method for composition measurement of an industrial distillation column includes an offline method, which is slow, tedious and could lead to inaccurate results. Among advantages of using online composition designed are to overcome the long time delay introduced by laboratory sampling and provide better estimation, which is suitable for online monitoring purposes. This paper pres...
متن کاملComparison of artificial neural network with logistic regression in prediction of tendency to surgical intervention in nurses
Introduction: Logistic regression is one of the modeling methods for bipartite dependent variables. On the other hand, artificial neural network is a flexible method with the least limitation. The importance of growing unnecessary beauty surgeries and the importance of prediction and classification made us consider the present study, with the aim of comparing logistic regression and artificial ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Expert Syst. Appl.
دوره 37 شماره
صفحات -
تاریخ انتشار 2010